Differential realizations, boson-fermion realizations of the spl(2,1) superalgebra and its representations

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1993 J. Phys. A: Math. Gen. 264319
(http://iopscience.iop.org/0305-4470/26/17/037)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.68
The article was downloaded on 01/06/2010 at 19:32

Please note that terms and conditions apply.

Differential realizations, boson-fermion realizations of the $\operatorname{spl}(2,1)$ superalgebra and its representations

Yong-Qing Chen
Department of Physics, Hunan Normal University, Changshà 410006, People's Republic of China

Received 13 August 1992

Abstract

Differential realizations of the $s p l(2,1)$ superalgebra on the spaces of homogeneous and inhomogeneous polynomials and the corresponding boson-fermion realizations are studied. The new indecomposable and irreducible representations of the $\operatorname{spl}(2,1)$ superalgebra are given on subspaces and quotient spaces of the universal enveloping algebra of Heisenberg-Weyl superalgebra. All the finite-dimensional irreducible representations of the $s p l(2,1)$ superalgebra are naturally obtained as special cases.

1. Introduction

Lie superalgebras have become increasingly important in nuclear physics, superunification, and in supergravity [1-3]. Recently, Turbiner and Ushveridze [4] have discussed the quasi-exactly solvable problems in quantum mechanics. A connection of quasi-exactly solvable problems and finite-dimensional inhomogeneous differential realizations of Lie algebras (or superalgebras) has been described at the first time by Turbiner [5]. The key to the settlement of the quasi-exactly solvable problems lies in studying finite-dimensional inhomogeneous differential realizations of Lie superalgebras. The case of some superalgebras has been considered by Shifman and Turbiner [6] and recently by Turbiner [7]. This paper of Backhouse [8] has also described one way of obtaining differential realizations of superalgebras. In the present paper we shall be concerned with the $\operatorname{spl}(2,1)$ superalgebra. The purpose of the present paper is to derive further inhomogeneous differential realization of the $\operatorname{spl}(2,1)$ superalgebra on the space of inhomogeneous polynomials employing variable substitution technique on the basis of the homogeneous differential realization. We then consider their corresponding relations of C-number differential operators and boson creation and annihilation operators, of Grassmann number differential operators and fermion creation and annihilation operators respectively. The corresponding boson-fermion realizations of the $\operatorname{spl}(2,1)$ superalgebra are obtained in terms of homogeneous and inhomogeneous differential realizations. The indecomposable representations of Lie superalgebras are well known to play a crucial role in describing unstable particle systems [9]. It is quite a valid approach to employ the boson-fermion realizations of Lie superalgebras in order to study their indecomposable representations [10-13]. In the present paper we shall study indecomposable representations of the $\operatorname{spl}(2,1)$ superalgebra on the universal enveloping algebra of Heisenberg-Weyl superalgebra, and on its subspaces and quotient spaces using the inhomogeneous boson-fermion
realization of this superalgebra. All the finite-dimensional irreducible representations of the $\operatorname{spl}(2,1)$ superalgebra are naturally obtained as special cases on the subspaces of generalized Fock space.

2. Homogeneous differential realization and corresponding boson-fermion realization of the $\operatorname{spl}(2,1)$

In accordance with Scheunert et al [14] the generators of the $\operatorname{spl}(2,1)$ superalgebra read as follows:

$$
\begin{equation*}
\left\{Q_{3}, Q_{+}, Q_{-}, B \in \operatorname{spl}(2, I) 0 \mid V_{+}, V_{-}, W_{+}, W_{-} \in \operatorname{spl} l(2,1) \bar{I}\right\} \tag{2.1}
\end{equation*}
$$

and satisfy the following commutation and anticommutation relations:

$$
\begin{array}{ll}
{\left[Q_{3}, Q_{ \pm}\right]= \pm Q_{ \pm}} & {\left[Q_{+}, Q_{-}\right]=2 Q_{3}} \\
{\left[B, Q_{ \pm}\right]=\left[B, Q_{3}\right]=0} & \\
{\left[Q_{3}, V_{ \pm}\right]= \pm \frac{1}{2} V_{ \pm}} & {\left[Q_{3}, W_{ \pm}\right]= \pm \frac{1}{2} W_{ \pm}} \\
{\left[Q_{ \pm}, V_{\mp}\right]=V_{ \pm}} & {\left[Q_{ \pm}, W_{\mp}\right]=W_{ \pm}} \\
{\left[Q_{ \pm}, V_{ \pm}\right]=0} & {\left[Q_{ \pm}, W_{ \pm}\right]=0} \tag{2.2}\\
{\left[B, Y_{ \pm}\right]=\frac{1}{2} V_{ \pm}} & {\left[B, W_{ \pm}\right]=-\frac{1}{2} W_{ \pm}} \\
\left\{V_{ \pm}, V_{ \pm}\right\}=\left\{V_{ \pm}, V_{\mp}\right\}=\left\{W_{ \pm}, W_{ \pm}\right\}=\left\{W_{ \pm}, W_{\mp}\right\}=0 \\
\left\{V_{ \pm}, W_{ \pm}\right\}= \pm Q_{ \pm} & \left\{V_{ \pm}, W_{\mp}\right\}=-Q_{3} \pm B .
\end{array}
$$

We choose a $(2,2)$ dimensional irreducible representation D :
$D\left(Q_{3}\right)=\left[\begin{array}{cccc}1 / 2 & 0 & 0 & 0 \\ 0 & -1 / 2 & & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right] \quad D(B)=\left[\begin{array}{cccc}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & -1 / 2 & 0 \\ 0 & 0 & 0 & 1 / 2\end{array}\right]$
$D\left(Q_{+}\right)=\left[\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right] \quad D\left(Q_{-}\right)=\left[\begin{array}{llll}0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$
$D\left(V_{+}\right)=\left[\begin{array}{cccc}0 & 0 & 1 /{ }^{2} 2 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 / \sqrt{ } 2 & 0 & 0\end{array}\right] \quad D\left(V_{-}\right)=\left[\begin{array}{cccc}0 & 0 & 0 & 0 \\ 0 & 0 & 1 / \sqrt{ } 2 & 0 \\ 0 & 0 & 0 & 0 \\ -1 / \sqrt{ } 2 & 0 & 0 & 0\end{array}\right]$
$D\left(W_{+}\right)=\left[\begin{array}{ccc}0 & 0 & 1 / \sqrt{ } 2 \\ 0 & 0 & 0 \\ 0 & 1 / \mathcal{V}_{2} & 0 \\ 0 & 0 & 0\end{array}\right] \quad D\left(W_{-}\right)=\left[\begin{array}{cccc}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 / \sqrt{ } 2 \\ -1 / \sqrt{ } 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$.

In order to study differential realization of the $\operatorname{spl}(2,1)$ superalgebra on the space of homogeneous polynomials, introducing four independent variables $\mu_{1}, \mu_{2}, \xi_{1}, \xi_{2}$ where μ_{1}, μ_{2} are C-numbers and ξ_{1}, ξ_{2} are Grassmann numbers respectively, we regard them as the basis of representation space, i.e.

$$
\mu_{1}=\left[\begin{array}{l}
1 \tag{2.4}\\
0 \\
0 \\
0
\end{array}\right] \quad \mu_{2}=\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right] \quad \xi_{1}=\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right] \quad \xi_{2}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right] .
$$

Noting (2.3) and (2.4), we obtain

$Q_{3} \mu_{1}=\frac{1}{2} \mu_{1}$	$Q_{3} \mu_{2}=-\frac{1}{2} \mu_{2}$	$Q_{3} \xi_{1}=0$	$Q_{3} \xi_{2}=0$
$B_{\mu 1}=0$	$B \mu_{2}=0$	$B \xi_{1}=-\frac{1}{2} \xi_{1}$	$B \xi_{2}=\frac{1}{2} \xi_{2}$
$Q+\mu_{1}=0$	$Q_{+} \mu_{2}=\mu_{1}$	$Q_{+} \xi_{1}=0$	$Q_{+} \xi_{2}=0$
$Q_{-} \mu_{1}=\mu_{2}$	$Q_{-} \mu_{2}=0$	$Q_{-} \xi_{1}=0$	$Q_{-} \xi_{2}=0$
$V_{+} \mu_{1}=0$	$V_{+} \mu_{2}=\frac{1}{\sqrt{2}} \xi_{2}$	$V_{+} \xi_{1}=\frac{1}{\sqrt{2}} \mu_{1}$	$V_{+} \xi_{2}=0$
$V_{-} \mu_{1}=-\frac{1}{\sqrt{2}} \xi_{2}$	$V_{-} \mu_{2}=0$	$V_{-} \xi_{1}=\frac{1}{\sqrt{2}} \mu_{2}$	$V_{-} \xi_{2}=0$
$W_{+} \mu_{1}=0$	$W_{+} \mu_{2}=\frac{1}{\sqrt{2}} \xi_{1}$	$W_{+} \xi_{1}=0$	
$W_{-} \mu_{1}=\frac{-1}{\sqrt{2}} \xi_{1}$	$W_{-} \mu_{2}=0$	$W_{+} \xi_{2}=\frac{1}{\sqrt{2}} \mu_{1}$	
		$W_{-} \xi_{1}=0$	$W_{-} \xi_{2}=\frac{1}{\sqrt{2}} \mu_{2}$.

Using differential operators the generators of the $s p l(2,1)$ are constructed as follows:

$$
\begin{array}{ll}
Q_{3}=\frac{1}{2}\left(\mu_{1} \partial / \partial \mu_{1}-\mu_{2} \partial / \partial \mu_{2}\right) & B=\frac{1}{2}\left(\xi_{2} \partial / \partial \xi_{2}-\xi_{1} \partial / \partial \xi_{1}\right) \\
Q_{+}=\mu_{1} \partial / \partial \mu_{2} & Q_{-}=\mu_{2} \partial / \partial \mu_{1} \tag{2.6}\\
V_{+}=\frac{1}{\sqrt{2}}\left(\mu_{1} \partial / \partial \xi_{1}+\xi_{2} \partial / \partial \mu_{2}\right) & V_{-}=-\frac{1}{\sqrt{2}}\left(\xi_{2} \partial / \partial \mu_{1}-\mu_{2} \partial / \partial \xi_{1}\right) \\
W_{+}=\frac{1}{\sqrt{2}}\left(\mu_{1} \partial / \partial \xi_{2}+\xi_{1} \partial / \partial \mu_{2}\right) & W_{-}=-\frac{1}{\sqrt{2}}\left(\xi_{1} \partial / \partial \mu_{1}-\mu_{2} \partial / \partial \xi_{2}\right)
\end{array}
$$

It is easily proved that the generators thus represented satisfy all the commutation and anticommutation relations of the $\operatorname{spl}(2,1)$. Substantially, (2.6) is a differential realization on the space of homogeneous polynomials of degree one, i.e $A_{1}=$ $\left\{\mu_{1}, \mu_{2}, \xi_{1}, \xi_{2}\right\}$. For the space of homogeneous polynomials of degree n,

$$
\begin{equation*}
A_{n}=\left\{\mu_{1}^{i_{1}} \mu_{2}^{t_{2}} \xi_{1}^{k_{1}} \xi_{2}^{k_{2}} \mid i_{1}, i_{2} \in Z^{+}, k_{1}, k_{2}=0.1 \text { and } i_{1}+i_{2}+k_{1}+k_{2}=n\right\} \tag{2.7}
\end{equation*}
$$

where Z^{+}denotes the set of all non-negative integer, it carries the direct product representation of the $\operatorname{spl}(2,1)$,

$$
\begin{equation*}
D_{s}^{\otimes_{n}}=(\underbrace{D \otimes D \otimes \cdots \otimes D}_{\text {degree } n}) \text { symmetrized } . \tag{2.8}
\end{equation*}
$$

Using the definition of direct product representation,

$$
\begin{align*}
\hat{F}\left(\mu_{1}^{i_{1}} \mu_{2}^{i_{2}} \xi_{1}^{k_{1}} \xi_{2}^{k_{2}}\right) & =\left(F \mu_{1}^{i_{1}}\right) \mu_{2}^{i_{2}} \xi_{1}^{k_{1}} \xi_{2}^{k_{2}}+\mu_{1}^{i_{1}}\left(F \mu_{2}^{i_{2}}\right) \xi_{1}^{k_{1}} \xi_{2}^{k_{2}} \\
& +\mu_{1}^{i_{1}} \mu_{2}^{i_{2}}\left(F \xi_{1}^{k_{1}}\right) \xi_{2}^{k_{2}}+\mu_{1}^{i_{1}} \mu_{2}^{i_{2}} \xi_{1}^{k_{1}}\left(F \xi_{2}^{k_{2}}\right) \tag{2.9}
\end{align*}
$$

where F stands for any generator of the $s p l(2.1)$, we can obtain its differential realization \hat{F} on A_{n}. It is easy to check that $\hat{F}=F$.

Consider their corresponding relations of C-number differential operators ($\mu_{i}, \partial / \partial \mu_{i}$) and boson creation and annihilation operators (b_{i}^{+}, b_{i}),

$$
\begin{array}{ll}
b_{r}^{+} \Leftrightarrow \mu_{i} & b_{1} \Leftrightarrow \partial / \partial \mu_{i} \\
{\left[b_{i}, b_{j}^{+}\right]=\delta_{i j}} & {\left[\partial / \partial \mu_{i}, \mu_{j}\right]=\delta_{i j}} \tag{2.10}\\
{\left[b_{i}, b_{i}\right]=\left[b_{i}^{+}, b_{j}^{+}\right]=0} \\
{\left[\partial / \partial \mu_{i}, \partial / \partial \mu_{j}\right]=\left[\mu_{i}, \mu_{j}\right]=0}
\end{array}
$$

and of Grassmann number differential operators $\left(\xi_{i}, \partial / \partial \xi_{i}\right)$ and fermion creation and annihilation operators (a_{i}^{+}, a_{i}), respectively,

$$
\begin{align*}
& a_{i}^{+} \Leftrightarrow \xi_{i} \quad a_{i} \Leftrightarrow \partial / \partial \xi_{i} \\
& \left\{a_{i}, a_{j}^{+}\right\}=\delta_{i j} \quad\left\{\partial / \partial \xi_{i}, \xi_{j}\right\}=\delta_{i j} \tag{2.11}\\
& \left\{a_{i}, a_{j}\right\}=\left\{a_{i}^{+}, a_{j}^{+}\right\}=0 \\
& \left\{\partial / \partial \xi_{i}, \partial / \partial \xi_{j}\right\}=\left\{\xi_{i}, \xi_{j}\right\}=0 .
\end{align*}
$$

The corresponding homogeneous boson-fermion realization of the $\operatorname{spl}(2,1)$ is obtained in terms of two pairs of boson operators and two pairs of fermion operators as follows:

$$
\begin{array}{ll}
Q_{3}=\frac{1}{2}\left(b_{1}^{+} b_{1}-b_{2}^{+} b_{2}\right) & B=\frac{1}{2}\left(a_{2}^{+} a_{2}-a_{1}^{+} a_{1}\right) \\
Q_{+}=b_{1}^{+} b_{2} & Q_{-}=b_{2}^{+} b_{1} \tag{2.12}\\
V_{+}=\frac{1}{\sqrt{2}}\left(b_{1}^{+} a_{1}+a_{2}^{+} b_{2}\right) & V_{-}=-\frac{1}{\sqrt{2}}\left(a_{2}^{+} b_{1}-b_{2}^{+} a_{1}\right) \\
W_{+}=\frac{1}{\sqrt{2}}\left(b_{1}^{+} a_{2}+a_{1}^{+} b_{2}\right) & W_{-}=-\frac{1}{\sqrt{2}}\left(a_{1}^{+} b_{1}-b_{2}^{+} a_{2}\right) .
\end{array}
$$

3. Inhomogeneous differential realization and corresponding boson-fermion realization of the $\operatorname{spl}(2,1)$

In order to get differential realization on the space of inhomogeneous polynomials, we introduce three new independent variables (x, y_{1}, y_{2}) and employ variable substitution

$$
\begin{equation*}
x=\frac{\mu_{1}}{\mu_{2}} \quad y_{1}=\frac{\xi_{1}}{\mu_{2}} \quad y_{2}=\frac{\xi_{2}}{\mu_{2}} \quad\left(\mu_{2} \neq 0\right) \tag{3.1}
\end{equation*}
$$

where x is a C-number and y_{1}, y_{2} are Grassmann numbers respectively. Clearly, the basis of A_{n} becomes

$$
\begin{equation*}
\mu_{1}^{t_{1}} \mu_{2}^{t_{2}} \xi_{1}^{k_{1}} \xi_{2}^{k_{2}} \Rightarrow x^{i_{1}} \mu_{2}^{n} y_{1}^{k_{1}} y_{2}^{k_{2}} \quad i_{1}+k_{1}+k_{2}=0,1, \ldots, n \tag{3.2}
\end{equation*}
$$

Let

$$
\begin{equation*}
A_{n}^{\prime}=\left\{x^{i_{1}} \mu_{2}^{n} y_{1}^{k_{1}} y_{2}^{k_{2}} i_{1}+k_{1}+k_{2}=0,1, \ldots, n, i_{1} \in Z^{+}, k_{1}, k_{2}=0,1\right\} \tag{3.3}
\end{equation*}
$$

then A_{n}^{\prime} is a space of inhomogeneous polynomials.
Using (2.6), (3.1) and the following definition

$$
\begin{align*}
\bar{F}\left(x^{i_{1}} \mu_{2}^{n} y_{1}^{k_{1}} y_{2}^{k_{2}}\right) & =\left(\hat{F} x^{i_{1}}\right) \mu_{2}^{n} y_{1}^{k_{1}} y_{2}^{k_{2}}+x^{i_{1}}\left(\hat{F} \mu_{2}^{n}\right) y_{1}^{k_{1}} y_{2}^{k_{2}}+x^{i} \mu_{2}^{n}\left(\hat{F} y_{1}^{k_{1}}\right) y_{2}^{k_{2}} \\
& +x^{i_{1}} \mu_{2}^{n} y_{1}^{k_{1}}\left(\hat{F} y_{2}^{k_{2}}\right) \tag{3.4}
\end{align*}
$$

we get the inhomogeneous differential realization \bar{F} of the $\operatorname{spl}(2,1)$ on A_{n}^{\prime},

$$
\begin{align*}
& \bar{Q}_{3}=-\frac{1}{2} n+x \partial / \partial x+\frac{1}{2} y_{1} \partial / \partial y_{1}+\frac{1}{2} y_{2} \partial / \partial y_{2} \\
& \bar{B}=\frac{1}{2} y_{2} \partial / \partial y_{2}-\frac{1}{2} y_{1} \partial / \partial y_{1} \\
& \bar{Q}_{+}=n x-x^{2} \partial / \partial x-x y_{1} \partial / \partial y_{1}-x y_{2} \partial / \partial y_{2} \\
& \bar{Q}_{-}=\partial / \partial x \tag{3.5}\\
& \bar{V}_{+}=\frac{1}{\sqrt{2}} n y_{2}+\frac{1}{\sqrt{2}} x \partial / \partial y_{1}-\frac{1}{\sqrt{2}} y_{2} x \partial / \partial x-\frac{1}{\sqrt{2}} y_{2} y_{1} \partial / \partial y_{1} \\
& \bar{V}_{-}=-\frac{1}{\sqrt{2}} y_{2} \partial / \partial x+\frac{1}{\sqrt{2}} \partial / \partial y_{1} \\
& \bar{W}_{+}=\frac{1}{\sqrt{2}} n y_{1}+\frac{1}{\sqrt{2}} x \partial / \partial y_{2}-\frac{1}{\sqrt{2}} y_{1} x \partial / \partial x-\frac{1}{\sqrt{2}} y_{1} y_{2} \partial / \partial y_{2} \\
& \tilde{W}_{-}=-\frac{1}{\sqrt{2}} y_{1} \partial / \partial x+\frac{1}{\sqrt{2}} \partial / \partial y_{2} .
\end{align*}
$$

It is worthy of note that μ_{2} is a cofactor in the basis of A_{n}^{\prime}. Granted that we extend the non-negative integer n to any real number, one still gets (3.5).

With a similar way, considering their corresponding relations of C-number differential operators $(x, \partial / \partial x)$ and boson creation and annihilation operators (b^{+}, b), and of Grassmann number differential operators ($y_{1}, \partial / \partial y_{1} ; y_{2}, \partial / \partial y_{2}$) and fermion creation and annihilation operators ($a_{1}^{+}, a_{1} ; a_{2}^{+}, a_{2}$)

$$
\begin{array}{ll}
b^{+} \Leftrightarrow x & b \Leftrightarrow \partial / \partial x \\
a_{1}^{+} \Leftrightarrow y_{1} & a_{1} \Leftrightarrow \partial / \partial y_{1} \tag{3.7}\\
a_{2}^{+} \Leftrightarrow y_{2} & a_{2} \Leftrightarrow \partial / \partial y_{2}
\end{array}
$$

we can get the corresponding inhomogeneous boson-fermion realization,

$$
\begin{align*}
& \tilde{Q}_{3}=-\frac{1}{2} n+b^{+} b+\frac{1}{2} a_{1}^{+} a_{1}+\frac{1}{2} a_{2}^{+} a_{2} \\
& \tilde{B}=\frac{1}{2} a_{2}^{+} a_{2}-\frac{1}{2} a_{1}^{+} a_{1} \\
& \tilde{Q}_{+}=n b^{+}-b^{+2} b-b^{+} a_{1}^{+} a_{1}-b^{+} a_{2}^{+} a_{2} \\
& \hat{Q}_{-}=b \tag{3.8}
\end{align*}
$$

$$
\begin{aligned}
& \bar{V}_{+}=\frac{1}{\sqrt{ } 2} n a_{2}^{+}+\frac{1}{\sqrt{ } 2} b^{+} a_{1}-\frac{1}{\sqrt{ } 2} a_{2}^{+} b^{+} b-\frac{1}{\sqrt{ } 2} a_{2}^{+} a_{1}^{+} a_{2} \\
& \tilde{V}_{-}=-\frac{1}{\sqrt{ } 2} a_{2}^{+} b+\frac{1}{\sqrt{2}} a_{1} \\
& \tilde{W}_{+}=\frac{1}{\sqrt{ } 2} n a_{1}^{+}+\frac{1}{\sqrt{ } 2} b^{+} a_{2}-\frac{1}{\sqrt{2}} a_{1}^{+} b^{+} b-\frac{1}{\sqrt{ } 2} a_{1}^{+} a_{2}^{+} a_{2} \\
& \tilde{W}_{-}=-\frac{1}{\sqrt{ } 2} a_{1}^{+} b+\frac{1}{\sqrt{2}} a_{2}
\end{aligned}
$$

Obviously, we use only one pair of boson operators and two pairs of fermion operators in obtaining inhomogeneous boson-fermion realization.

4. Indecomposable representation of the $\operatorname{spl}(2,1)$

Consider $(1+2)$ state Heisenberg-Weyl superalgebra $H:\left\{b^{+}, b, a_{1}^{+}, a_{1}, a_{2}^{+}, a_{2}, E\right\}$ where E stands for the unit operator. According to the Poincare-Birckhoff-Witt theorem, we choose for its universal enveloping algebra Ω a basis
$\left\{\varphi\left(k, l, \alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}, t\right)=b^{+k} b^{\prime} a_{1}^{+\alpha_{1}} a_{1}^{\beta_{1}} a_{2}^{+\alpha_{2}} a_{2}^{\beta_{2}} E^{t} \mid k, l, t \in Z^{+}, \alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}=0,1\right\}$.
Each vector in the space of Ω is a linear combination of the basis with complex coefficients. Then, we consider an extension $\bar{\Omega}$ of the space Ω, in which each element is a linear combination of the basis whose coefficients are elements of the Grassmann algebra \bar{G}.

The representation of the superalgebra H on the space of $\bar{\Omega}$ is defined as

$$
\begin{align*}
& f\left(b^{+}\right) \varphi\left(k, l, \alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}, t\right)=\varphi\left(k+1, l, \alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}, t\right) \\
& f(b) \varphi\left(k, l, \alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}, t\right) \\
& \quad=\varphi\left(k, l+1, \alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}, t\right)+k \varphi\left(k-1, l, \alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}, t+1\right) \\
& f\left(a_{1}^{+}\right) \varphi\left(k, l, \alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}, t\right)=\left(1-\alpha_{1}\right) \varphi\left(k, l, \alpha_{1}+1, \beta_{1}, \alpha_{2}, \beta_{2}, t\right) \tag{4.2}\\
& f\left(a_{1}\right) \varphi\left(k, l, \alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}, t\right) \\
& \quad=(-1)^{\alpha_{1}} \varphi\left(k, l, \alpha_{1}, \beta_{1}+1, \alpha_{2}, \beta_{2}, t\right)+\alpha_{1} \varphi\left(k, l, \alpha_{1}-1, \beta_{1}, \alpha_{2}, \beta_{2}, t+1\right) \\
& f\left(a_{2}^{+}\right) \varphi\left(k, l, \alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}, t\right)=(-1)^{a_{1}+\beta_{1}}\left(1-\alpha_{2}\right) \varphi\left(k, l, \alpha_{1}, \beta_{1}, \alpha_{2}+1, \beta_{2}, t\right) \\
& f\left(a_{2}\right) \varphi\left(k, l, \alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}, t\right)=(-1)^{a_{1}+\beta_{1}+\alpha_{2}} \varphi\left(k, l, \alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}+1, t\right) \\
& \quad+(-1)^{a_{1}+\beta_{1}} \alpha_{2} \varphi\left(k, l, \alpha_{1}, \beta_{1}, \alpha_{2}-1, \beta_{2}, t+1\right) .
\end{align*}
$$

Now, we consider the quotient space V with the basis

$$
\begin{gather*}
V=(\Omega / I):\left\{\varphi\left(k, l, \alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}\right)=\varphi\left(k, l, \alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}, 0\right) \bmod I\right. \\
\left.\times k, l \in Z^{+}, \alpha_{l}, \beta_{1}, \alpha_{2}, \beta_{2}=0,1\right\} \tag{4.3}
\end{gather*}
$$

corresponding to the two-sided ideal I generated by the element $E-1$.
The representation (4.2) induces the new representation on the space of V
$f\left(b^{+}\right) \varphi\left(k, l, \alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}\right)=\varphi\left(k+1, l, \alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}\right)$

$$
\begin{aligned}
& f(b) \varphi\left(k, l, \alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}\right) \\
& \quad=\varphi\left(k, l+1, \alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}\right)+k \varphi\left(k-1, l, \alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}\right) \\
& \begin{array}{r}
f\left(a_{1}^{+}\right) \varphi\left(k, l, \alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}\right)=\left(1-\alpha_{1}\right) \varphi\left(k, l, \alpha_{1}+1, \beta_{1}, \alpha_{2}, \beta_{2}\right) \\
f\left(a_{1}\right) \varphi\left(k, l, \alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}\right) \\
\quad=(-1)^{\alpha_{1}} \varphi\left(k, l, \alpha_{1}, \beta_{1}+1, \alpha_{2}, \beta_{2}\right)+\alpha_{1} \varphi\left(k, l, \alpha_{1}-1, \beta_{1}, \alpha_{2}, \beta_{2}\right) \\
f\left(a_{2}^{+}\right) \varphi\left(k, l, \alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}\right)=(-1)^{\alpha_{1}+\beta_{1}}\left(1-\alpha_{2}\right) \varphi\left(k, l, \alpha_{1}, \beta_{1}, \alpha_{2}+1, \beta_{2}\right) \\
f\left(a_{2}\right) \varphi\left(k, l, \alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}\right)=(-1)^{\alpha_{1}+\beta_{1}+\alpha_{2}} \varphi\left(k, l, \alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}+1\right) \\
\quad+(-1)^{\alpha_{1}+\beta_{1}} \alpha_{2} \varphi\left(k, l, \alpha_{1}, \beta_{1}, \alpha_{2}-1, \beta_{2}\right) .
\end{array}
\end{aligned}
$$

Using the following relation

$$
\begin{equation*}
L\left(F\left(b^{+}, b, a_{1}^{+}, a_{1}, a_{2}^{+}, a_{2}\right)\right)=\stackrel{\rightharpoonup}{F}\left(f\left(b^{+}\right), f(b), f\left(a_{1}^{+}\right), f\left(a_{1}\right), f\left(a_{2}^{+}\right), f\left(a_{2}\right)\right) \tag{4.5}
\end{equation*}
$$

and the boson-fermion realization (3.8), we obtain the representation L of the spl(2.1) on the space of V,

$$
\begin{align*}
& L\left(Q_{3}\right) \varphi\left(k, l, \alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}\right)=\left(-\frac{1}{2} n+k+\frac{1}{2} \alpha_{1}+\frac{1}{2} \alpha_{2}\right) \varphi\left(k, l, \alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}\right) \\
& \quad+\varphi\left(k+1, l+1, \alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}\right) \\
& \quad+\frac{1}{2}(-1)^{\alpha_{1}}\left(1-\alpha_{1}\right) \varphi\left(k, l, \alpha_{1}+1, \beta_{1}+1, \alpha_{2}, \beta_{2}\right) \\
& \quad+\frac{1}{2}(-1)^{\alpha_{2}}\left(1-\alpha_{2}\right) \varphi\left(k, l, \alpha_{1}, \beta_{1}, \alpha_{2}+1, \beta_{2}+1\right) \\
& \begin{array}{r}
L(B) \varphi\left(k, l, \alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}\right)=\left(\frac{1}{2} \alpha_{2}-\frac{1}{2} \alpha_{1}\right) \varphi\left(k, l, \alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}\right) \\
\\
\quad+\frac{1}{2}(-1)^{\alpha_{2}}\left(1-\alpha_{2}\right) \varphi\left(k, l, \alpha_{1}, \beta_{1}, \alpha_{2}+1, \beta_{2}+1\right) \\
\quad-\frac{1}{2}(-1)^{\alpha_{1}}\left(1-\alpha_{1}\right) \varphi\left(k, l, \alpha_{1}+1, \beta_{1}+1, \alpha_{2}, \beta_{2}\right) \\
L\left(Q_{+}\right) \varphi(k, l, \\
\left.\alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}\right)=\left(n-k-\alpha_{1}-\alpha_{2}\right) \varphi\left(k+1, l, \alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}\right) \\
\\
\quad-\varphi\left(k+2, l+1, \alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}\right) \\
\\
\quad-(-1)^{\alpha_{1}}\left(1-\alpha_{1}\right) \varphi\left(k+1, l, \alpha_{1}+1, \beta_{1}+1, \alpha_{2}, \beta_{2}\right) \\
\\
-(-1)^{\alpha_{2}}\left(1-\alpha_{2}\right) \varphi\left(k+1, l, \alpha_{1}, \beta_{1}, \alpha_{2}+1, \beta_{2}+1\right)
\end{array}
\end{align*}
$$

$L\left(Q_{-}\right) \varphi\left(k, l, \alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}\right)$

$$
=\varphi\left(k, l+1, \alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}\right)+k \varphi\left(k-1, l, \alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}\right)
$$

$L\left(V_{+}\right) \varphi\left(k, l, \alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}\right)$

$$
\begin{aligned}
= & \frac{1}{\sqrt{2}}(-1)^{\alpha_{1}+\beta_{1}}\left(n-k-\alpha_{1}\right)\left(1-\alpha_{2}\right) \varphi\left(k, l, \alpha_{1}, \beta_{1}, \alpha_{2}+1, \beta_{2}\right) \\
& +\frac{1}{\sqrt{2}}(-1)^{\alpha_{1}} \varphi\left(k+1, l, \alpha_{1}, \beta_{1}+1, \alpha_{2}, \beta_{2}\right) \\
& +1 \frac{1}{\sqrt{2}} \alpha_{1} \varphi\left(k+1, l, \alpha_{1}-1, \beta_{1}, \alpha_{2}, \beta_{2}\right) \\
& -\frac{1}{\sqrt{2}}(-1)^{\alpha_{1}+\beta_{1}}\left(1-\alpha_{2}\right) \varphi\left(k+1, l+1, \alpha_{1}, \beta_{1}, \alpha_{2}+1, \beta_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{1}{\sqrt{2}}(-1)^{\beta_{1}}\left(1-\alpha_{1}\right)\left(1-\alpha_{2}\right) \varphi\left(k+1, l+1, \alpha_{1}, \beta_{1}, \alpha_{2}+1, \beta_{2}\right) \\
& L\left(V_{-}\right) \varphi\left(k, l, \alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}\right)=\frac{1}{\sqrt{2}}(-1)^{\alpha_{1}} \varphi\left(k, l, \alpha_{1}, \beta_{1}+1, \alpha_{2}, \beta_{2}\right) \\
& +\frac{1}{\sqrt{ } 2} \alpha_{1} \varphi\left(k, l, \alpha_{1}-1, \beta_{1}, \alpha_{2}, \beta_{2}\right) \\
& -\frac{1}{\sqrt{2}}(-1)^{\alpha_{1}+\beta_{1}}\left(1-\alpha_{2}\right) \varphi\left(k, l+1, \alpha_{1}, \beta_{1}, \alpha_{2}+1, \beta_{2}\right) \\
& -\frac{1}{\sqrt{2}}(-1)^{\alpha_{1}+\beta_{1}} k\left(1-\alpha_{2}\right) \varphi\left(k-1, l, \alpha_{1}, \beta_{1}, \alpha_{2}+1, \beta_{2}\right) \\
& L\left(W_{+}\right) \varphi\left(k, l, \alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}\right)=\frac{1}{\sqrt{2}}\left(n-k-a_{2}\right)\left(1-\alpha_{1}\right) \varphi\left(k, l, \alpha_{1}+1, \beta_{1}, \alpha_{2}, \beta_{2}\right) \\
& +\frac{1}{\sqrt{2}}(-1)^{\alpha_{1}+\beta_{1}+\alpha_{2}} \varphi\left(k+1, l, \alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}+1\right) \\
& +\frac{1}{\sqrt{2}}(-1)^{\alpha_{1}+\beta_{1}} \alpha_{2} \varphi\left(k+1, l, \alpha_{1}, \beta_{1}, \alpha_{2}-1, \beta_{2}\right) \\
& -\frac{1}{\sqrt{2}}\left(1-\alpha_{1}\right) \varphi\left(k+1, l+1, \alpha_{1}+1, \beta_{1}, \alpha_{2}, \beta_{2}\right) \\
& -\frac{1}{\sqrt{2}}(-1)^{\alpha_{2}}\left(1-\alpha_{1}\right)\left(1-\alpha_{2}\right) \varphi\left(k, l, \alpha_{1}+1, \beta_{1}, \alpha_{2}+1, \beta_{2}+1\right) \\
& L\left(W_{-}\right) \varphi\left(k, l, \alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}\right)=\frac{1}{\sqrt{2}}(-1)^{a_{1}+\beta_{1}+\alpha_{2}} \varphi\left(k, l, \alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}+1\right) \\
& +\frac{1}{\sqrt{ } 2}(-1)^{a_{1}+\beta_{1}} \alpha_{2} \varphi\left(k, l, \alpha_{1}, \beta_{1}, \alpha_{2}-1, \beta_{2}\right) \\
& -\frac{1}{\sqrt{2}}\left(1-\alpha_{1}\right) \varphi\left(k, l+1, \alpha_{1}+1, \beta_{1}, \alpha_{2}, \beta_{2}\right) \\
& -\frac{1}{\sqrt{2}} k\left(1-\alpha_{1}\right) \varphi\left(k-1, l, \alpha_{1}+1, \beta_{1}, \alpha_{2}, \beta_{2}\right) .
\end{aligned}
$$

From (4.6), it follows that the sum $\left(l+\beta_{1}+\beta_{2}\right)$ does not decrease under the action of the representation L and the subspace

$$
V_{m}=\left\{\varphi\left(k, l, \alpha_{1}, \beta_{l}, \alpha_{2}, \beta_{2}\right) \in V \mid l+\beta_{1}+\beta_{2} \geqslant m\right\}
$$

is invariant, for which no invariant complementary subspace exists. Thus, the representation given by (4.6) on the space V is indecomposable.

The generalized Fock space is defined as a quotient space of V
$Y=(V / J):\left\{\varphi\left(k, \alpha_{1}, \alpha_{2}\right)=\varphi\left(k, 0, \alpha_{1}, 0, \alpha_{2}, 0\right) \bmod J \mid k \in Z^{+}, \alpha_{1}, \alpha_{2}=0,1\right\}$
where J is the left ideal generated by the element $b-\lambda, a_{1}-\eta_{1}$ and $a_{1}-\eta_{2}, \lambda$ is a
complex number and η_{1} and η_{2} are generators of the Grassmann algebra \tilde{G}. On this space, the representation (4.6) induces the new representation

$$
\begin{align*}
& \begin{array}{l}
L\left(Q_{s}\right) \varphi\left(k, \alpha_{1}, \alpha_{2}\right)=\left(-\frac{1}{2} n+k+\frac{1}{2} \alpha_{1}+\frac{1}{2} \alpha_{2}\right) \varphi\left(k, \alpha_{1}, \alpha_{2}\right) \\
+ \\
+\lambda \varphi\left(k+1, \alpha_{1}, \alpha_{2}\right)+\frac{1}{2}\left(1-\alpha_{1}\right) \eta_{1} \varphi\left(k, \alpha_{1}+1, \alpha_{2}\right) \\
\\
+\frac{1}{2}\left(1-\alpha_{2}\right) \eta_{2} \varphi\left(k, \alpha_{1}, \alpha_{2}+1\right)
\end{array} \\
& \begin{aligned}
L(B) \varphi\left(k, \alpha_{1}, \alpha_{2}\right) & =\left(\frac{1}{2} \alpha_{2}-\frac{1}{2} \alpha_{1}\right) \varphi\left(k, \alpha_{1}, \alpha_{2}\right)+\frac{1}{2}\left(1-\alpha_{2}\right) \eta_{2} \varphi\left(k, \alpha_{1}, \alpha_{2}+1\right) \\
& -\frac{1}{2}\left(1-\alpha_{1}\right) \eta_{1} \varphi\left(k, \alpha_{1}+1, \alpha_{2}\right)
\end{aligned} \\
& \begin{aligned}
& L\left(Q_{+}\right) \varphi\left(k, \alpha_{1}, \alpha_{2}\right)=\left(n-k-\alpha_{1}-\alpha_{2}\right) \varphi\left(k+1, \alpha_{1}, \alpha_{2}\right)-\lambda \varphi\left(k, \alpha_{1}, \alpha_{2}\right)=\lambda \varphi\left(k, \alpha_{1}, \alpha_{2}\right)+k \varphi\left(k-1, \alpha_{1}, \alpha_{2}\right) \\
& \quad\left(1-\alpha_{1}\right) \eta_{1} \varphi\left(k+1, \alpha_{1}+1, \alpha_{2}\right)-\left(1-\alpha_{2}\right) \eta_{2} \varphi\left(k+1, \alpha_{1}, \alpha_{2}+1\right) \varphi\left(k, \alpha_{1}, \alpha_{2}\right)=\frac{1}{\sqrt{2}}(-1)^{a_{1}}\left(n-k-\alpha_{1}\right)\left(1-\alpha_{2}\right) \varphi\left(k, \alpha_{1}, \alpha_{2}+1\right) \\
&+\frac{1}{\sqrt{2}}(-1)^{\alpha_{1}} \eta_{1} \varphi\left(k+1, \alpha_{1}, \alpha_{2}\right)+\frac{1}{\sqrt{2}} \alpha_{1} \varphi\left(k+1, \alpha_{1}-1, \alpha_{2}\right) \\
&-\frac{1}{\sqrt{2}}(-1)^{a_{1}}\left(1-\alpha_{2}\right) \lambda \varphi\left(k+1, \alpha_{1}, \alpha_{2}+1\right) \\
&-\frac{1}{\sqrt{2}}\left(1-\alpha_{1}\right)\left(1-\alpha_{2}\right) \eta_{1} \varphi\left(k, \alpha_{1}+1, \alpha_{2}+1\right)
\end{aligned}
\end{align*}
$$

$$
L\left(V_{-}\right) \varphi\left(k, \alpha_{1}, \alpha_{2}\right)=\frac{1}{\sqrt{2}}(-1)^{a_{1}} \eta_{1} \varphi\left(k, \alpha_{1}, \alpha_{2}\right)+\frac{1}{\sqrt{2}} a_{1} \varphi\left(k, \alpha_{1}-1, \alpha_{2}\right)
$$

$$
-\frac{1}{\sqrt{2}}(-1)^{a_{1}}\left(1-\alpha_{2}\right) \lambda \varphi\left(k, \alpha_{1}, \alpha_{2}+1\right)-\frac{1}{\sqrt{2}}(-1)^{a_{1}}\left(1-\alpha_{2}\right) k \varphi\left(k-1, \alpha_{1}, \alpha_{2}+1\right)
$$

$$
L\left(W_{+}\right) \varphi\left(k, \alpha_{1}, \alpha_{2}\right)=\frac{1}{\sqrt{2}}\left(n-k-\alpha_{2}\right)\left(1-\alpha_{1}\right) \varphi\left(k, \alpha_{1}+1, \alpha_{2}\right)
$$

$$
+\frac{1}{\sqrt{2}}(-1)^{a_{1}+\alpha_{2}} \eta_{2} \varphi\left(k+1, \alpha_{1}, \alpha_{2}\right)+\frac{1}{\sqrt{2}}(-1)^{a_{1}} \alpha_{2} \varphi\left(k+1, \alpha_{1}, \alpha_{2}-1\right)
$$

$$
-\frac{1}{\sqrt{2}}\left(1-\alpha_{1}\right) \lambda \varphi\left(k+1, a_{1}+1, \alpha_{2}\right)
$$

$$
-\frac{1}{\sqrt{2}}(-1)^{\alpha_{2}}\left(1-\alpha_{1}\right)\left(1-\alpha_{2}\right) \eta_{2} \varphi\left(k, \alpha_{1}+1, \alpha_{2}+1\right)
$$

$L\left(W_{-}\right) \varphi\left(k, \alpha_{1}, \alpha_{2}\right)=\frac{1}{\sqrt{2}}(-1)^{\alpha_{1}+\alpha_{2}} \eta_{2} \varphi\left(k, \alpha_{1}, \alpha_{2}\right)+\frac{1}{\sqrt{2}}(-1)^{\alpha_{1}} \alpha_{2} \varphi\left(k, \alpha_{1}, \alpha_{2}-1\right)$

$$
-\frac{1}{\sqrt{ } 2}\left(1-\alpha_{1}\right) \lambda \varphi\left(k, \alpha_{1}+1, \alpha_{2}\right)-\frac{1}{\sqrt{2}}\left(1-\alpha_{1}\right) k \varphi\left(k-1, \alpha_{1}+1, \alpha_{2}\right) .
$$

The representation given by (4.7) is an infinite-dimensional irreducible representation for the cases $\lambda \neq 0, \eta_{1} \neq 0$ or $\eta_{2} \neq 0$. When $\lambda=0=\eta_{1}=\eta_{2}$, the representation (4.7) becomes

$$
\begin{align*}
& L\left(Q_{3}\right) \varphi\left(k, \alpha_{1}, \alpha_{2}\right)=\left(-\frac{1}{2} n+k+\frac{1}{2} \alpha_{1}+\frac{1}{2} \alpha_{2}\right) \varphi\left(k, \alpha_{1}, \alpha_{2}\right) \\
& L(B) \varphi\left(k, \alpha_{1}, \alpha_{2}\right)=\left(\frac{1}{2} \alpha_{2}-\frac{1}{2} \alpha_{1}\right) \varphi\left(k, \alpha_{1}, \alpha_{2}\right) \\
& L\left(Q_{+}\right) \varphi\left(k, \alpha_{1}, \alpha_{2}\right)=\left(n-k-\alpha_{1}-\alpha_{2}\right) \varphi\left(k+1, \alpha_{1}, \alpha_{2}\right) \\
& L\left(Q_{-}\right) \varphi\left(k, \alpha_{1}, \alpha_{2}\right)=k \varphi\left(k-1, \alpha_{1}, \alpha_{2}\right) \tag{4.8}\\
& L\left(V_{+}\right) \varphi\left(k, \alpha_{1}, \alpha_{2}\right)
\end{align*}
$$

$$
=\frac{1}{\sqrt{2}}(-1)^{\alpha_{1}}\left(n-k-\alpha_{1}\right)\left(1-\alpha_{2}\right) \varphi\left(k, \alpha_{1}, \alpha_{2}+1\right)+\frac{1}{\sqrt{2}} \alpha_{1} \varphi\left(k+1, \alpha_{1}-1, \alpha_{2}\right)
$$

$$
L\left(V_{-}\right) \varphi\left(k, \alpha_{1}, \alpha_{2}\right)=\frac{1}{\sqrt{2}} \alpha_{1} \varphi\left(k, \alpha_{1}-1, \alpha_{2}\right)-\frac{1}{\sqrt{2}}(-1)^{\alpha_{1}}\left(1-\alpha_{2}\right) k \varphi\left(k-1, \alpha_{1}, \alpha_{2}+1\right)
$$

$$
L\left(W_{+}\right) \varphi\left(k, \alpha_{1}, \alpha_{2}\right)
$$

$$
=\frac{1}{\sqrt{2}}\left(n-k-\alpha_{2}\right)\left(1-\alpha_{1}\right) \varphi\left(k, \alpha_{1}+1, \alpha_{2}\right)+\frac{1}{\sqrt{2}}(-1)^{\alpha_{1}} \alpha_{2} \varphi\left(k+1, \alpha_{1}, \alpha_{2}-1\right)
$$

$L\left(W_{-}\right) \varphi\left(k, \alpha_{1}, \alpha_{2}\right)=\frac{1}{\sqrt{2}}(-1)^{\alpha_{1}} \alpha_{2} \varphi\left(k, \alpha_{1}, \alpha_{2}-1\right)-\frac{1}{\sqrt{2}}\left(1-\alpha_{1}\right) k \varphi\left(k-1, \alpha_{1}+1, \alpha_{2}\right)$.
We can easily see that the representation (4.8) is an infinite-dimensional irreducible representation when $n \notin Z^{+}$. Obviously, the invariant subspace exists when $n \in Z^{+}$,

$$
\begin{align*}
& Y(n):\left\{\varphi\left(k, \alpha_{1}, \alpha_{2}\right) \in Y \mid k+\alpha_{1}+\alpha_{2} \leqslant n, k \in Z^{+}, \alpha_{1}, \alpha_{2}=0,1\right\} \\
& \operatorname{dim} Y(n)=4 n \tag{4.9}
\end{align*}
$$

and there is no invariant complementary subspace. Thus, the representation (4.8) is indecomposable. Restricting the representation given by (4.8) to the invariant subspace $Y(n)$, we can obtain a finite-dimensional irreducible representation of the $\operatorname{spl}(2,1)$. We shall discuss it in detail in the next section.

5. Finite-dimensional irreducible representation of the $\operatorname{spl}(\mathbf{2}, \mathbf{1})$

For the sake of simplicity, we re-define the basis of $Y(n)$ as

$$
\begin{equation*}
\left|j, m, \alpha_{1}, \alpha_{2}\right\rangle=1 \mid\left[(j+m)!\left(j-m-\alpha_{1}\right)!\left(j-m-\alpha_{2}\right)!\right]^{1 / 2} \varphi\left(j+m, \alpha_{1}, \alpha_{2}\right) \tag{5.1}
\end{equation*}
$$

$j=\left(\frac{1}{2}\right) n=0, \frac{1}{2}, 1, \ldots$
$m=-j,-j+1, \ldots, j \quad$ when $\alpha_{1}=0, \alpha_{2}=0$
$m=-j,-j+1, \ldots, j-1 \quad$ when $\alpha_{1}=0, \alpha_{2}=1$
$m=-j,-j+1, \ldots, j-1 \quad$ when $\alpha_{1}=1, \alpha_{2}=0$
$m=-j,-j+1, \ldots, j-2 \quad$ when $\alpha_{1}=1, \alpha_{2}=1$.
The action of the generators of the $\operatorname{spl}(2,1)$ on the new basis vector is straightforwardly obtained with the help of (5.1) and (4.8). One finds
$L\left(Q_{3}\right)\left|j, m, \alpha_{1}, \alpha_{2}\right\rangle=\left(m+\frac{1}{2} \alpha_{1}+\frac{1}{2} \alpha_{2}\right)\left|j, m, \alpha_{1}, \alpha_{2}\right\rangle$
$L(B)\left|j, m, \alpha_{1}, \alpha_{2}\right\rangle=\frac{1}{2}\left(\alpha_{2}-\alpha_{2}\right)\left|j, m, \alpha_{1}, \alpha_{2}\right\rangle$
$L\left(Q_{+}\right)\left|j, m, \alpha_{1}, \alpha_{2}\right\rangle=\left(j-m-\alpha_{1}-\alpha_{2}\right)\{(j+m+1)$

$$
\begin{equation*}
\left./\left[\left(j-m-\alpha_{1}\right)\left(j-m-\alpha_{2}\right)\right]\right\}^{1 / 2}\left|j, m+1, \alpha_{1}, \alpha_{2}\right\rangle \tag{5.2}
\end{equation*}
$$

$L\left(Q_{-}\right)\left|j, m, \alpha_{1}, \alpha_{2}\right\rangle=\left[(j+m)\left(j-m+1-\alpha_{1}\right)\left(j-m+1-\alpha_{2}\right)\right]^{1 / 2}\left|j, m-1, \alpha_{1}, \alpha_{2}\right\rangle$ $L\left(V_{+}\right)\left|j, m, \alpha_{1}, \alpha_{2}\right\rangle$

$$
\begin{aligned}
= & \frac{1}{\sqrt{ } 2}(-1)^{\alpha_{1}}\left(1-\alpha_{2}\right)\left(j-m-\alpha_{1}\right)\left(j-m-\alpha_{2}\right)^{-1 / 2}\left|j, m, \alpha_{1}, \alpha_{2}+1\right\rangle \\
& +\frac{1}{\sqrt{ } 2} \alpha_{1}\left[(j+m+1) /\left(j-m-\alpha_{2}\right)\right]^{1 / 2}\left|j, m+1, \alpha_{1}-1, \alpha_{2}\right\rangle
\end{aligned}
$$

$L\left(V_{-}\right)\left|j, m, \alpha_{1}, \alpha_{2}\right\rangle=\frac{1}{\sqrt{2}} \alpha_{1}\left(j-m+1-\alpha_{1}\right)^{1 / 2}\left|j, m, \alpha_{1}-1, \alpha_{2}\right\rangle$

$$
-\frac{1}{\sqrt{ } 2}(-1)^{a_{1}}\left(1-\alpha_{2}\right)\left[\left(j-m+1-\alpha_{1}\right)(j+m)\right]^{1 / 2}\left|j, m-1, \alpha_{1}, \alpha_{2}+1\right\rangle
$$

$\left.L\left(W_{+}\right)\left|j, m, \alpha_{1}, \alpha_{2}\right\rangle=\frac{1}{\sqrt{2}}\left(1-\alpha_{1}\right)\left(j-m-\alpha_{2}\right)\left(j-m-\alpha_{1}\right)^{-1 / 2} j, m, \alpha_{1}+1, \alpha_{2}\right\rangle$

$$
+\frac{1}{\sqrt{2}}(-1)^{\alpha_{1}} \alpha_{2}\left[(j+m+1) /\left(j-m-\alpha_{1}\right)\right]^{1 / 2}\left|j, m+1, \alpha_{1}, \alpha_{2}-1\right\rangle
$$

$L\left(W_{-}\right)\left|j, m, \alpha_{1}, \alpha_{2}\right\rangle=\frac{1}{\sqrt{2}}(-1)^{\alpha_{1}} \alpha_{2}\left(j-m+1-\alpha_{2}\right)^{1 / 2}\left|j, m, \alpha_{1}, \alpha_{2}-1\right\rangle$

$$
-\frac{1}{\sqrt{2}}\left(1-\alpha_{1}\right)\left[\left(j-m+1-\alpha_{2}\right)(j+m)\right]^{1 / 2}\left|j, m-1, \alpha_{1}+1, \alpha_{2}\right\rangle
$$

It is fairly straightforward to check that the above irreducible representation of the $s p l(2,1)$ has a finite dimension $8 j$.

As an example, we write $(2+2)$ dimension irreducible representation of the $\operatorname{spl}(2,1)$, when $j=\frac{1}{2}$, that is,
$L\left(Q_{3}\right)=\left[\begin{array}{cccc}1 / 2 & 0 & 0 & 0 \\ 0 & -1 / 2 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right] \quad L(B)=\left[\begin{array}{cccc}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & -1 / 2 & 0 \\ 0 & 0 & 0 & 1 / 2\end{array}\right]$

$$
\begin{align*}
& L\left(Q_{+}\right)=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \\
& L\left(Q_{-}\right)=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \quad L\left(V_{+}\right)=\left[\begin{array}{cccc}
0 & 0 & 1 / \sqrt{ } 2 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 1 / \sqrt{ } 2 & 0 & 0
\end{array}\right] \\
& L\left(V_{-}\right)=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 1 / \sqrt{ } 2 & 0 \\
0 & 0 & 0 & 0 \\
-1 / \sqrt{ } 2 & 0 & 0 & 0
\end{array}\right] \\
& L\left(W_{+}\right)=\left[\begin{array}{cccc}
0 & 0 & 0 & 1 / \sqrt{ } 2 \\
0 & 0 & 0 & 0 \\
0 & 1 / \sqrt{ } 2 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \quad L\left(W_{-}\right)=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 / \sqrt{ } 2 \\
-1 / \sqrt{ } 2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] . \tag{5.3}
\end{align*}
$$

It is easy to see that this $(2+2)$ dimension irreducible representation L is substantially the representation D that is chosen for constructing inhomogeneous differential realization of the $\operatorname{spl}(2,1)$.

We have obtained the homogeneous and inhomogeneous differential realizations, the corresponding boson-fermion realizations of the $s p l(2,1)$ and its indecomposable and irreducible represenations. All the finite-dimensional irreducible representations of the $\operatorname{spl}(2,1)$ can be naturally obtained on the subspace of the generalized Fock space. Our method can be generalized to any Lie algebra (or superalgebra).

References

[1] Balantekin A and Bars I 1982 J. Math. Phys. 231239
[2] Dondi P D and Jarvis P D 1980 Phys. Lett. 8475
[3] Van Niewenhuizen P 1981 Phys. Rep. 681921
[4] Turbiner A V and Ushveridze A G 1987 Phys. Lett. A 126181
[5] Turbiner A V 1988 Commun. Math. Phys. 118467
[6] Shifman M A and Turbiner A V 1989 Commun. Math. Phys. 126347
[7] Turbiner A V 1992 preprint ETH-TH/92-21 and CPT-92/P. 2708
[8] Backhouse N B 1979 J. Phys. A: Math. Gen. 1221
[9] Dirac P A M 1984 Int. J. Theor. Phys. 23(8) 677
[10] Sun C-P 1987 J. Phys. A: Math. Gen. 205823
[11] Gruber B et al 1984 J. Math. Phys. 251253
[12] Gruber B and Leuczewski R 1983 J. Phys. A: Math. Gen. 163703
[13] Leuczewski R and Gruber B 1986 J. Phys. A: Math. Gen. 191
[14] Scheunert M, Nahm W and Rittenberg V 1977 J. Math. Phys. 18155

